4766 Statistics 1

Q1	Madian		
(i)	Median = 2 Mode = 1	B1 CAO B1 CAO	2
(ii)	1 2 3 4 Number of People	S1 labelled linear scales on both axes H1 heights	2
(iii)	Positive	B1	1
		TOTAL	5
Q2 (i)	$\binom{25}{5}$ different teams = 53130	M1 for $\binom{25}{5}$ A1 CAO	2
(ii)	$ \binom{14}{3} \times \binom{11}{2} = 364 \times 55 = 20020 $	M1 for either combination M1 for product of both A1 CAO	3
		TOTAL	5
Q3 (i)	Mean = $\frac{126}{12}$ = 10.5	B1 for mean	
	$Sxx = 1582 - \frac{126^2}{12} = 259$ $S = \sqrt{\frac{259}{11}} = 4.85$	M1 for attempt at <i>Sxx</i> A1 CAO	3
(ii)	New mean = 500 + 100 ×10.5 = 1550	B1 ANSWER GIVEN	
	New s = $100 \times 4.85 = 485$	M1A1FT	3
(iii)	On average Marlene sells more cars than Dwayne.	E1	
	Marlene has less variation in monthly sales than Dwayne.	E1FT	2
		TOTAL	8

		1	
Q4 (i)	E(X) = 25 because the distribution is symmetrical.	E1 ANSWER GIVEN	1
	Allow correct calculation of Σrp		
(ii)	$E(X^{2}) = 10^{2} \times 0.2 + 20^{2} \times 0.3 + 30^{2} \times 0.3 + 40^{2} \times 0.2 = 730$ $Var(X) = 730 - 25^{2} = 105$	M1 for $\Sigma r^2 p$ (at least 3 terms correct) M1dep for -25^2 A1 CAO	3
Q5 (i)	Distance freq width f dens 0- 360 50 7.200 50- 400 50 8.000 100- 307 100 3.070 200-400 133 200 0.665	M1 for fds A1 CAO Accept any suitable unit for fd such as eg freq per 50 miles. L1 linear scales on both axes and label W1 width of bars H1 height of bars	5
(ii)	Median = 600th distance Estimate = $50 + \frac{240}{400} \times 50 = 50 + 30 = 80$	B1 for 600 th M1 for attempt to interpolate A1 CAO	3
		TOTAL	8
Q6 (i)	(A) P(at most one) = $\frac{83}{100} = 0.83$ (B) P(exactly two) = $\frac{10+2+1}{100} = \frac{13}{100} = 0.13$	B1 aef M1 for (10+2+1)/100 A1 aef	1 2
(ii)	P(all at least one) = $\frac{53}{100} \times \frac{52}{99} \times \frac{51}{98} = \frac{140556}{970200} = 0.145$	M1 for $\frac{53}{100} \times$ M1 dep for product of next 2 correct fractions A1 CAO	3

(vi)	$= \frac{0.188}{0.8} = 0.235$ Expected number = 110 × 0.388 = 42.7	M1 for product	2
	$=\frac{0.188}{0.8}=0.235$	ATCAU	
	$\frac{P(\text{Delayed and no technical problems})}{P(\text{No technical problems})}$ $= \frac{0.8 \times 0.15 \times 0.1 + 0.8 \times 0.15 \times 0.9 + 0.8 \times 0.85 \times 0.1}{0.8}$	M1 for numerator M1 for denominator	
	$Or = 0.15 \times 0.1 + 0.15 \times 0.9 + 0.85 \times 0.1 = 0.235$ Or (using conditional probability formula)	M1 for all 3 products M1 for sum of all 3 products A1CAO	3
	$Or = 1 - 0.9 \times 0.85 = 1 - 0.765 = 0.235$	M1 for product M1 for 1 – product A1CAO	
(v)	P(Delayed No technical problems) $Either = 0.15 + 0.85 \times 0.1 = 0.235$	M1 for 0.15 + M1 for second term A1CAO	
(,	$= \frac{\text{P(Just one problem and delay)}}{\text{P(Delay)}} = \frac{0.329}{0.388} = 0.848$	M1 for denominator A1FT	3
(iii)	P(just one problem) = 0.2×0.85×0.9 + 0.8×0.15×0.9 + 0.8×0.85×0.1 = 0.153 + 0.108 + 0.068 = 0.329 P(Just one problem delay)	B1 one product correct M1 three products M1 sum of 3 products A1 CAO	4
	P(Delayed) = $1 - 0.8 \times 0.85 \times 0.9 = 1 - 0.612 = 0.388$	M1 for 1 – P(delayed) A1FT	4
Q7 (i) (ii)	$a = 0.8, \ b = 0.85, \ c = 0.9.$ P(Not delayed) = $0.8 \times 0.85 \times 0.9 = 0.612$	B1 for any one B1 for the other two M1 for product A1 CAO	2

4766 Mark Scheme June 2009

Q8	$X \sim B(15, 0.2)$		
(i)	(A) $P(X = 3) = {15 \choose 3} \times 0.2^3 \times 0.8^{12} = 0.2501$	M1 $0.2^3 \times 0.8^{12}$ M1 $\binom{15}{3} \times p^3 q^{12}$ A1 CAO	2
	OR from tables $0.6482 - 0.3980 = 0.2502$	OR: M2 for 0.6482 – 0.3980 A1 CAO	3
	$(\mathbf{B}) P(\mathbf{X} \ge 3) = 1 - 0.3980 = 0.6020$	M1 P(X≤2) M1 1-P(X≤2) A1 CAO	3
	(C) $E(X) = np = 15 \times 0.2 = 3.0$	M1 for product A1 CAO	2
(ii)	(A) Let p = probability of a randomly selected child eating at least 5 a day H ₀ : p = 0.2 H ₁ : p > 0.2 (B) H ₁ has this form as the proportion who eat at least 5 a day is expected to increase.	B1 for definition of <i>p</i> in context B1 for H ₀ B1 for H ₁ E1	4
(iii)	Let $X \sim B(15, 0.2)$ $P(X \ge 5) = 1 - P(X \le 4) = 1 - 0.8358 = 0.1642 > 10\%$ $P(X \ge 6) = 1 - P(X \le 5) = 1 - 0.9389 = 0.0611 < 10\%$ So critical region is $\{6,7,8,9,10,11,12,13,14,15\}$	B1 for 0.1642 B1 for 0.0611 M1 for at least one comparison with 10% A1 CAO for critical region <i>dep</i> on M1 and at least one B1 M1 <i>dep</i> for comparison A1 <i>dep</i> for decision	6
	we conclude that there is evidence to suggest that the proportion who eat at least five a day has increased.	and conclusion in context	18