4766 Statistics 1

Q1 (i)	Median $=2$ Mode $=1$	B1 CAO B1 CAO	$\mathbf{2}$
(ii)	S1 labelled linear Scales on both axes H1 heights		

$\begin{aligned} & \text { Q7 } \\ & \text { (i) } \end{aligned}$	$a=0.8, b=0.85, c=0.9$.	B1 for any one B1 for the other two	2
(ii)	$\begin{aligned} & P(\text { Not delayed })=0.8 \times 0.85 \times 0.9=0.612 \\ & P(\text { Delayed })=1-0.8 \times 0.85 \times 0.9=1-0.612=0.388 \end{aligned}$	M1 for product A1 CAO M1 for 1 - P (delayed) A1FT	4
(iii)	$\begin{aligned} & \text { P(just one problem) } \\ & \quad=0.2 \times 0.85 \times 0.9+0.8 \times 0.15 \times 0.9+0.8 \times 0.85 \times 0.1 \\ & =0.153+0.108+0.068=0.329 \end{aligned}$	B1 one product correct M1 three products M1 sum of 3 products A1 CAO	4
(iv)	$\begin{aligned} & \mathrm{P}(\text { Just one problem \| delay }) \\ & =\frac{\mathrm{P}(\text { Just one problem and delay })}{\mathrm{P}(\text { Delay })}=\frac{0.329}{0.388}=0.848 \end{aligned}$	M1 for numerator M1 for denominator A1FT	3
(v)	P (Delayed \| No technical problems) Either $=0.15+0.85 \times 0.1=0.235$ $\text { Or }=1-0.9 \times 0.85=1-0.765=0.235$ $\text { Or }=0.15 \times 0.1+0.15 \times 0.9+0.85 \times 0.1=0.235$ Or (using conditional probability formula) $\begin{aligned} & \frac{P(\text { Delayed and no technical problems })}{P(\text { No technical problems })} \\ & =\frac{0.8 \times 0.15 \times 0.1+0.8 \times 0.15 \times 0.9+0.8 \times 0.85 \times 0.1}{0.8} \\ & =\frac{0.188}{0.8}=0.235 \end{aligned}$	M1 for 0.15 + M1 for second term A1CAO M1 for product M1 for 1 - product A1CAO M1 for all 3 products M1 for sum of all 3 products A1CAO M1 for numerator M1 for denominator A1CAO	3
(vi)	Expected number $=110 \times 0.388=42.7$	M1 for product A1FT	2
		TOTAL	18

$\begin{array}{\|l} \hline \text { Q8 } \\ \text { (i) } \end{array}$	$X \sim B(15,0.2)$ (A) $\quad \mathrm{P}(\boldsymbol{X}=3)=\binom{15}{3} \times 0.2^{3} \times 0.8^{12}=0.2501$ OR from tables $\quad 0.6482-0.3980=0.2502$ (B) $\mathrm{P}(\boldsymbol{X} \geq 3)=1-0.3980=0.6020$ (C) $\mathrm{E}(X)=n p=15 \times 0.2=3.0$	M1 $0.2^{3} \times 0.8^{12}$ M1 $\binom{15}{3} \times p^{3} q^{12}$ A1 CAO OR: M2 for 0.6482 0.3980 A1 CAO M1 $P(X \leq 2)$ M1 1-P(X $\leq 2)$ A1 CAO M1 for product A1 CAO	3 3 2
(ii)	(A) Let $p=$ probability of a randomly selected child eating at least 5 a day $\mathrm{H}_{0}: p=0.2$ $\mathrm{H}_{1}: p>0.2$ (B) $\quad \mathrm{H}_{1}$ has this form as the proportion who eat at least 5 a day is expected to increase.	B1 for definition of p in context B1 for H_{0} B1 for H_{1} E1	4
(iii)	$\begin{aligned} & \text { Let } X \sim \mathrm{~B}(15,0.2) \\ & \mathrm{P}(X \geq 5)=1-\mathrm{P}(X \leq 4)=1-0.8358=0.1642>10 \% \\ & \mathrm{P}(X \geq 6)=1-\mathrm{P}(X \leq 5)=1-0.9389=0.0611<10 \% \end{aligned}$ So critical region is $\{6,7,8,9,10,11,12,13,14,15\}$ 7 lies in the critical region, so we reject null hypothesis and we conclude that there is evidence to suggest that the proportion who eat at least five a day has increased.	B1 for 0.1642 B1 for 0.0611 M1 for at least one comparison with 10\% A1 CAO for critical region dep on M1 and at least one B1 M1 dep for comparison A1 dep for decision and conclusion in context	6
		TOTAL	18

